Enantioselective Synthesis of ansa-Zirconocenes

Matthew D. LoCoco and Richard F. Jordan*
Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637

Received August 6, 2004; E-mail: rfjordan@uchicago.edu

Chiral "Brintzinger type" group 4 metal ansa-metallocene complexes exhibit high stereodirecting ability in many reactions. ${ }^{1,2}$ However, ansa-metallocenes have been under-utilized in enantioselective catalysis, due in large part to the limited availability of enantiomerically pure catalysts. ${ }^{3,4}$ Only a few ansa-metallocenes have been resolved, and most catalytic studies have used the original (EBTHI) ZrX_{2} and (EBTHI)TiX ${ }_{2}$ systems. ${ }^{5}$ Here we describe a simple, efficient, and potentially general enantioselective synthesis of ansa-zirconocenes.

We recently reported a diastereoselective "chelate-controlled" synthesis of racemic ansa-zirconocenes, which is based on the reaction of $\mathrm{Li}_{2}\left[\mathrm{Cp}^{\prime} \mathrm{XCp}^{\prime}\right]$ salts with chelated bis-amide compounds $\mathrm{Zr}\left\{\mathrm{RN}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NR}\right\} \mathrm{Cl}_{2}(\mathrm{THF})_{2}\left(\mathbf{1} ; \mathrm{R}=\mathrm{Ph}, \mathrm{SiMe}_{3}\right)$, as shown in eq 1. ${ }^{6}$ The twist conformation of the $\mathrm{Zr}\left\{\mathrm{RN}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NR}\right\}$ ring in $\mathbf{1}$

positions the $\mathrm{N}-\mathrm{R}$ substituents on opposite sides of the $\mathrm{N}-\mathrm{Zr}-\mathrm{N}$ plane. This conformation is matched with the rac-metallocene structure but is incompatible with the meso isomer due to steric crowding between the $\mathrm{N}-\mathrm{R}$ and Cp^{\prime} groups, which leads to complete selectivity for the rac product.

We reasoned that incorporation of substituents at C1 and C3 of the bis-amide ligand of $\mathbf{1}$ in a stereo-defined manner would favor one enantiomer of the twist conformation in the resulting metallocene, and possibly provide a means of controlling enantioselectivity. To test this concept, we prepared $\mathrm{Zr}\left\{(2 R, 4 R)-\mathrm{PhNCHMeCH}_{2}-\right.$ $\mathrm{CHMeNPh}_{3} \mathrm{Cl}_{2}(\mathrm{THF})_{2}(R, R-7$; Scheme 1$)$, a chiral analogue of $\mathbf{1}$.

Scheme 1

Conversion of ($2 S, 4 S$)-pentanediol ($S, S-\mathbf{2}$) to the ditriflate $(S, S-\mathbf{3})$, followed by reaction with $\left[\left(\mathrm{Me}_{2} \mathrm{~N}_{2} \mathrm{CNH}_{2}\right] \mathrm{N}_{3}\right.$, yields $(2 R, 4 R)$ diazidopentane ($R, R-4$) quantitatively. ${ }^{7}$ Reaction of $(R, R)-4$ with PhBCl_{2} followed by methanol workup and neutralization yields N, N^{\prime}-diphenyl-($2 R, 4 R$)-pentanediamine $\left(R, R-5,76 \%,>99.5 \%\right.$ ee). ${ }^{8}$ Deprotonation of $R, R-5$ with 2 equiv of n-BuLi yields $\mathrm{Li}_{2}[(2 R, 4 R)$ $\left.\mathrm{PhNCHMeCH} \mathrm{CHMeNPh}^{2}\right](R, R-6)(99 \%)$. Reaction of $\mathrm{ZrCl}_{4}(\mathrm{THF})_{2}$ and 1 equiv of $R, R-6$ affords $R, R-7$ (84% isolated).

The reaction of $R, R-7$ with $\mathrm{Li}_{2}[\mathrm{SBI}]\left(\mathrm{Et}_{2} \mathrm{O}\right)(8 a)^{5}$ or $\mathrm{Li}_{2}[\mathrm{EBI}]-$ $\left(\mathrm{Et}_{2} \mathrm{O}\right)(\mathbf{8 b})^{5}$ in THF affords the corresponding metallocenes S, S (SBI)Zr $\left\{(2 R, 4 R)-\mathrm{PhNCHMeCH}{ }_{2} \mathrm{CHMeNPh}\right\}(S, S, R, R-9 \mathbf{a})$ or S, S (EBI)Zr $\left\{(2 R, 4 R)-\mathrm{PhNCHMeCH}{ }_{2} \mathrm{CHMeNPh}\right\}(S, S, R, R-9 \mathbf{b})$ in $>95 \%$ isolated yield (eq 2). The ${ }^{1} \mathrm{H}$ NMR spectra of isolated $\mathbf{9 a}, \mathbf{b}$ display,

in each case, a single set of resonances and show that a single diastereomer is present. These results establish that the metallocene units of $\mathbf{9 a}, \mathbf{b}$ are formed in $>99 \%$ ee. No significant side products were detected in these reactions. The use of THF as the solvent is important, as reactions of $R, R-7$ with $\mathbf{8 a}, \mathbf{b}$ in $\mathrm{Et}_{2} \mathrm{O}$ yielded mixtures of products. Compound $\mathbf{9 b}$ was converted to the corresponding enantiomerically pure dichloride $S, S-\mathbf{1 0 b}$ (91% isolated, $>99 \%$ ee) by reaction with HCl in $\mathrm{Et}_{2} \mathrm{O}$. The chiral diamine $R, R-5$ was recovered.
The configurations of $S, S, R, R-\mathbf{9 a}$ and $S, S-\mathbf{1 0 b}$ were established by X-ray crystallography. Additionally, $S, S-\mathbf{1 0 b}$ was hydrogenated to the known S, S-(EBTHI) $\mathrm{ZrCl}_{2}(S, S-11 \mathrm{~b})$, and the configuration and optical purity of $S, S-\mathbf{1 1 b}$ were established from the optical rotation of this species and NMR analysis of its bis- (R) - O-acetylmandelate derivative., ${ }^{3,5,9}$ These results confirm the configurations and optical purity of $S, S-\mathbf{1 0 b}$ and $S, S, R, R-\mathbf{9 b}$.

The molecular structure of $S, S, R, R-9$ a is shown in Figure 1. The $\mathrm{Zr}\{\mathrm{PhNCHMeCH} 2 \mathrm{CHMeNPh}\}$ ring adopts a twist λ conformation, ${ }^{10}$ which is matched to the S, S-metallocene unit. The C 1 and C 3 methyl groups ($\mathrm{C}(17)$ and $\mathrm{C}(17 \mathrm{~A})$) occupy pseudoequatorial positions and point away from the metallocene unit, while, as illustrated in the space-filling view, the pseudoaxial $\mathrm{C} 1-\mathrm{H}$ and $\mathrm{C} 3-\mathrm{H}$ hydrogens point directly toward the indenyl rings. To form the R, R-metallocene without severe $\mathrm{N}-\mathrm{Ph} /$ indenyl steric crowding, the bis-amide chelate ring would have to invert to the δ configuration. However, in this case, the C 1 and C 3 methyl groups would occupy pseudoaxial positions, and severe methyl/indenyl steric crowding would result.

While these structural data and steric arguments suggest that the matched metallocenes $S, S, R, R-\mathbf{9 a}$ and $S, S, R, R-\mathbf{9 b}$ may be more stable than the other stereoisomers of these complexes, the operative stereocontrol mechanism in eq 2 is unknown. X-ray crystallographic analyses show that the chelate rings of $R, R-7$ and $\mathrm{Cp}_{2} \mathrm{Zr}\{(2 R, 4 R)-$ $\left.\mathrm{PhNCHMeCH} \mathrm{CHM}_{2} \mathrm{CHPN}\right\}(R, R-12)$ adopt twist-boat conformations (Figure 2), suggesting that this may be the most stable conformation of these rings in the absence of significant steric interactions with other ligands. However, both $R, R-7$ and $R, R-12$ exhibit C_{2} symmetry on the NMR time scale at $25^{\circ} \mathrm{C}$, which

Figure 1. Molecular structure and space-filling view of $S, S, R, R-9 \mathbf{a}$. H atoms are omitted from the ORTEP view. The axial $\mathrm{C} 1-\mathrm{H}$ and $\mathrm{C} 3-\mathrm{H}$ hydrogen atoms are colored blue, and the equatorial methyl groups are colored red in the space-filling view. Bond distances $(\AA): \mathrm{Zr}-\mathrm{N}(1) 2.095(4), \mathrm{Zr}-$ cent 2.301. Bond angles (deg): $\mathrm{N}(1)-\mathrm{Zr}(1)-\mathrm{N}(1 \mathrm{~A}) 90.2(2)$, cent $(1)-\mathrm{Zr}(1)-$ cent(2) 125.5 .

Figure 2. Molecular structures of $R, R-7$ (top) and $R, R-12$ (bottom). H atoms are omitted. Bond distances (\AA) and angles (deg): $R, R-7, \mathrm{Zr}(1)-\mathrm{N}(1)$ 2.028(2), $\mathrm{Zr}(1)-\mathrm{N}(2) 2.046(2), \mathrm{Zr}(1)-\mathrm{O}(1) 2.348(2), \mathrm{Zr}(1)-\mathrm{O}(2) 2.319(2)$, $\mathrm{Zr}(1)-\mathrm{Cl}(1) 2.484(2), \mathrm{Zr}(1)-\mathrm{Cl}(2) 2.504(2), \mathrm{N}(1)-\mathrm{Zr}(1)-\mathrm{N}(2) 92.01(7)$, $\mathrm{Cl}(1)-\mathrm{Zr}(1)-\mathrm{Cl}(2) 161.91(2), \mathrm{O}(1)-\mathrm{Zr}(1)-\mathrm{O}(2) 77.3(5) ; R, R-\mathbf{1 2}, \mathrm{Zr}-\mathrm{N}(1)$ 2.087(2), $\mathrm{Zr}-\mathrm{N}(2) 2.173(2), \mathrm{Zr}-\operatorname{cent}(1) 2.258, \mathrm{Zr}-\operatorname{cent}(2) 2.287, \mathrm{~N}(1)-$ $\mathrm{Zr}-\mathrm{N}(2) 91.62(8)$, $\operatorname{cent}(1)-\mathrm{Zr}-\operatorname{cent}(2)$ 124.1.
indicates that the chelate rings are flexible. Given the potential complexity of the mechanism of substitution of the chloride and

THF ligands of 7 by the incoming indenyl ligands, ${ }^{11}$ more detailed studies will be required to understand the origin of stereocontrol in these reactions.

The methodology described here should be useful for the enantioselective synthesis of other bis-indenyl metallocenes and has the advantage that both enantiomers are available by using either R, R - or $S, S-7$. Tuning the steric interactions between the chiral bisamide directing ligand and the metallocene framework by variation of the C1, C3, and N-substituents should enable broad application of this strategy. ${ }^{6 b}$

Acknowledgment. This work was supported by the National Science Foundation (CHE-0212210). We thank Dr. Ian Steele for X-ray structure determinations.

Supporting Information Available: Experimental procedures and characterization data for new compounds (PDF); X-ray crystallographic data for $R, R-7, S, S, R, R-9 \mathbf{a}, S, S-10 b$, and $R, R-12$ (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) (a) Brintzinger, H. H.; Fischer, D.; Mülhaupt, R.; Rieger, B.; Waymouth, R. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 1143. (b) Hoveyda, A. H.; Morken, J. P. Angew. Chem., Int. Ed. Engl. 1996, 35, 1262. (c) Halterman, R. L. In Metallocenes: Synthesis, Reactivity, Applications; Togni, A., Halterman, R. L., Eds.; Wiley-VCH: Weinheim, 1998; Vol. 1, Chapter 8, p 455.
(2) Recent examples: (a) Blum, S. A.; Walsh, P. J.; Bergman R. G. J. Am. Chem. Soc. 2003, 125, 14276. (b) Mandal, S. K.; Amin, S. R.; Crowe, W. E. J. Am. Chem Soc. 2001, 123, 6457. (c) Mori, M.; Takaki, T.; Makabe, M.; Sato, Y. Tetrahedron Lett. 2003, 44, 3797. (d) Yun, J.; Buchwald, S. L. Chirality 2000, 12, 476. (e) Yun, J.; Buchwald, S. L. J. Org. Chem. 2000, 65, 767. (f) Bondar, G. V.; Aldea, R.; Levy, C. J.; Jaquith, J. B.; Collins, S. Organometallics 2000, 19, 947. (g) Halterman, R. L.; Zhu, C.; Chen, Z.; Dunlap, M. S.; Khan, M. A.; Nicholas, K. M. Organometallics 2000, 19, 3824. (h) Sweeney, Z. K.; Salsman, J. L.; Andersen, R. A.; Bergman, R. G. Angew. Chem., Int. Ed. 2000, 39, 2339. (i) Adams, J. A.; Heron, N. M.; Koss, A.; Hoyveda, A. H. J. Org. Chem. 1999, 64, 854. (j) Dagorne, S.; Rodewald, S.; Jordan, R. F. Organometallics 1997, 16, 5541.
(3) (a) Wild, F. R. W. P.; Zsolnai, L.; Huttner, G.; Brintzinger, H. H. J. Organomet. Chem. 1982, 232, 233. (b) Schäfer, A.; Karl, E.; Zsolnai, L.; Huttner, G.; Brintzinger, H. H. J. Organomet. Chem. 1987, 328, 87. (c) Chin, B.; Buchwald, S. L. J. Org. Chem. 1997, 62, 2267. (d) Chin, B.; Buchwald, S. L. J. Org. Chem. 1996, 61, 5650.
(4) (a) Hollis, T. K.; Wang, L.; Tham, F. J. Am. Chem. Soc. 2000, 122, 11737. (b) Ringwald, M.; Strürmer, R.; Brintzinger, H. H. J. Am. Chem. Soc. 1999, 121, 1524. (c) Schmidt, K.; Reinmuth, A.; Rief, U.; Diebold, J.; Brintzinger, H. H. Organometallics 1997, 16, 1724. (d) Huttenloch, M. E.; Dorer, B.; Rief, U.; Prosenc, M.; Schmidt, K.; Brintzinger, H. H. J. Organomet. Chem. 1997, 541, 219. (e) Ellis, W. W.; Hollis, K. T.; Odenkirk, W.; Whelan, J.; Ostrander, R.; Rheingold, A. L.; Bosnich, B. Organometallics 1993, 12, 4391. (f) Halterman, R. L.; Ramsey, T. M. Organometallics 1993, 12, 2879. (g) Rheingold, A. L.; Robinson, N. P.; Whelan, J.; Bosnich, B. Organometallics 1992, 11, 1869. (h) Schnutenhaus, H.; Brintzinger H. H. Angew. Chem., Int. Ed. Engl. 1979, 18, 777.
(5) Abbreviations: EBTHI, 1,2-ethylene-bis(tetrahydroindenyl); Cp^{\prime}, generic cyclopentadienyl or indenyl; X, generic bridge; SBI, $\mathrm{Me}_{2} \mathrm{Si}(\text { indenyl })_{2}$; EBI, 1,2-ethylene-bis(indenyl); cent, Cp^{\prime} ring centroid.
(6) (a) Zhang, X.; Zhu, Q.; Guzei, I. A.; Jordan, R. F. J. Am. Chem. Soc. 2000, 122, 8093. (b) LoCoco, M. D.; Jordan, R. F. Organometallics 2003, 22, 5498.
(7) Enders, D.; Jegelka, U.; Ducker, B. Angew. Chem., Int. Ed. Engl. 1993, 32, 423.
(8) Brown, H. C.; Midland, M. M.; Levy, A. B.; Suzuki, A.; Sono, S.; Itoh, M. Tetrahedron 1987, 43, 4079.
(9) Wild, F. R. W. P.; Wasiucionek, M.; Huttner, G.; Brintzinger, H. H. J. Organomet. Chem. 1985, 288, 63.
(10) Hawkins, C. J. Absolute Configuration of Metal Complexes; WileyInterscience: New York, 1971; p 28.
(11) Wiesenfeldt, H.; Reinmuth, A.; Barsties, E.; Evertz, K.; Brintzinger, H. H. J. Organomet. Chem. 1989, 369, 359.

JA045245G

